公式测试1. 行内公式测试 勾股定理:a2+b2=c2 a^2 + b^2 = c^2 a2+b2=c2二次方程求根:x=−b±b2−4ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2a−b±b2−4ac欧拉恒等式:eiπ+1=0 e^{i\pi} + 1 = 0 eiπ+1=02. 独立公式测试 二次方程解:x=−b±b2−4ac2a x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} x=2a−b±b2−4ac高斯积分:∫−∞∞e−x2dx=π \int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} ∫−∞∞e−x2dx=π矩阵行列式:∣abcd∣=ad−bc \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc acbd=ad−bc极限定义:limx→0sinxx=1 \lim_{x \to 0} \frac{\sin x}{x} = 1 x→0limxsinx=1傅里叶变换:f^(ξ)=∫−∞∞f(x)e−2πixξdx \hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx f^(ξ)=∫−∞∞f(x)e−2πixξdx麦克斯韦方程组(微分形式):∇⋅E=ρε0∇⋅B=0∇×E=−∂B∂t∇×B=μ0J+μ0ε0∂E∂t \begin{aligned} \nabla \cdot \mathbf{E} &= \frac{\rho}{\varepsilon_0} \\ \nabla \cdot \mathbf{B} &= 0 \\ \nabla \times \mathbf{E} &= -\frac{\partial \mathbf{B}}{\partial t} \\ \nabla \times \mathbf{B} &= \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \end{aligned} ∇⋅E∇⋅B∇×E∇×B=ε0ρ=0=−∂t∂B=μ0J+μ0ε0∂t∂E3. 复杂公式测试 黎曼ζ函数:ζ(s)=∑n=1∞1ns=∏p prime11−p−s \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} ζ(s)=n=1∑∞ns1=p prime∏1−p−s1薛定谔方程:iℏ∂∂tΨ=H^Ψ i\hbar \frac{\partial}{\partial t} \Psi = \hat{H} \Psi iℏ∂t∂Ψ=H^Ψ我要借这个测试页面放点东西hello,你好最后更新于 October 18, 2025